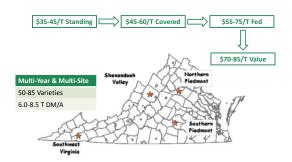

Preserving Quality Feed & Feed Quality

Patrick French


Profitability of Mid-Atlantic Dairies

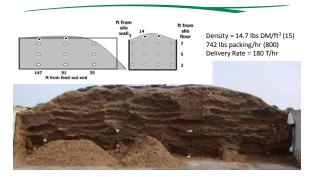
Which Feeds Should We Consider?

Ingredient	lbs DM	% of DM	\$/d	Days Stored	Inv \$ (1,000)
Corn Silage	21.0	36.5	1.42	400	425
Alfalfa	10.2	17.8	1.02	365	279
Corn Grain	7.3	12.7	1.24	10	9.3
Wheat Grain	3.5	6.1	0.56	20	8.4
Soybean Hulls	3.4	5.9	0.26	20	3.8
Expeller SBM	2.6	4.4	0.48	8	2.9
SBM	2.8	3.8	0.49	8	2.9
Brewers	2.0	3.5	0.19	9	1.3
Condensed Solubles	2.0	3.5	0.16	14	1.7
Mineral Mix	1.3	2.3	0.65	8	3.9
Fat	0.8	1.4	0.60	14	6.3
Animal Protein	0.3	0.5	0.13	90	8.6
Total	56.6		7.19		754

Corn Yield (Silage) and Cost

Value of Corn Silage – The Hokie Way

- Grain
 - -6.0-8.5 T/A @ 35% Grain = 85-120 bu/A
 - \$672-948/A or \$40/T @ 35% DM
- Forage
 - 35% Mature Grass Hay, 35% Alfalfa Hay, 30%
 Soyhulls
 - \$200/DM T or \$70/T @ 35% DM
- Market Replacement of Corn Silage = \$110/T


Value of Corn Silage – The Hoo Way

- Carbohydrates \$79/AF T
 - pt Starch = \$3.29, pt Sol fiber = \$8.88, pt Sugar = \$1.12, and pt Digestible NDF = \$1.43
- Energy \$86/AF T
 - Mcal ME = \$0.10, Mcal NE = \$0.15, pt TDN = \$3.24
- Fiber \$82/AF T
 - pt Effective NDF = \$2.45, pt Digestible NDF = \$4.97

Where are the Opportunities?

Loss	Good Mgt	Not So Good Mgt
Feeding	5	7
Feed Out	3	5
Storage	10	15
Filling	1	3
Harvest	1	2
Total	20	32
COP	+\$10/T	+\$15/T
11-1 2000		

How Much Silage is Lost During Storage?

Invisible Losses in Well Packed Bunker Silos Approaches 8%

	Bottom	Middle	Тор	Dome
Density, lbs DM/ft ³	17.7ª	16.7 ^b	14.0 ^c	10.5 ^d
DM, %	31.4ª	31.7ª	30.6 ^b	29.4 ^b
DM Loss, %	6.5ª	5.0 ^b	8.4 ^c	10.9 ^d
	Left	Mid-Left	: Mid-Ri	ght Rig
Density, lbs DM/ft ³	13.7a	16.2b	15.8 ^t	13.

31.9b

7.6

31.0a

7.2

31.8b

7.6

30.3a

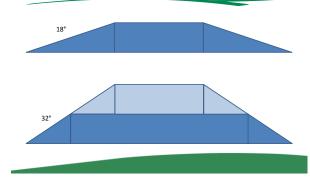
Griswold et al. (2011)

DM, %

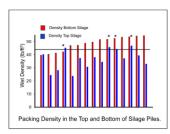
DM Loss, %

Dry Matter Loss as Influenced by Silage Density

Density (lbs DM/ft ³)	DM Loss, % (Alfalfa Silage)	DM Loss, % (Corn Silage)
10	20	9.8 (10.9)
14	17	8.1 (8.4)
15	16	7.7 (7.7)
16	15	7.3
18	13	6.5
22	10	4.9


Sidewall Plastic Improves Silage Quality

Drive Over? Pile



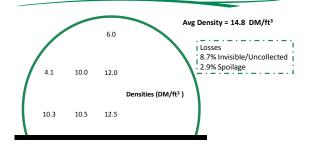
-	-

Most Piles are Not Drive-Over

The San Joaquin Valley Air Pollution Control District's Rule 4570

Silage Mitigation Measures

- Cover within 72 hours of last delivery with 5 mil+;
- Density benchmarks be reached (44 AF lbs/ft³),
- Harvest at the correct moisture (\leq 35% DM) and TCL (\leq 3/4");
- Manage exposed face
- Use inoculant or acid
 Or forget the above and use a sealed system (Ag-Bag)


How Do You Get "Good" Density?

Density (lbs DM/ft^3) = $(8.5 + PF \times 0.0155) \times (0.818 + PF \times 0.0155) \times (0.8$ 0.0136 x D)

$$PF = \left(\frac{Avg\ Tractor\ Wt}{Layer\ Thickness}\right) \times \sqrt{\frac{No.\ Tractors\ \times\ DM\%}{Delivery\ Rate\ (T/hr)}}$$

- Total Tractor Weight
- · Height of Pile
- Tractor Time
- Dry Matter
- Packing Layer Thickness
- · Delivery Rate
- · Length of Cut

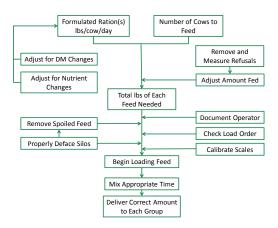
Density and Loss from Bags

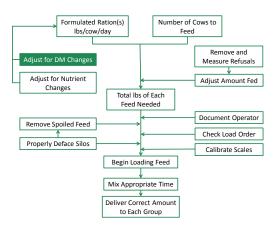
Muck and Holmes (2006)

Where are the Opportunities?

Loss	Good Mgt	Not So Good Mgt
Feeding	5	7
Feed Out	3	5
Storage	10	15
Filling	1	3
Harvest	1	2
Total	20	32
COP	+\$10/T	+\$15/T
Holmes 2008		

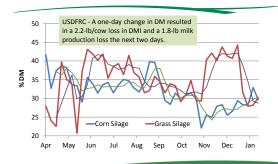
Other Considerations for Preserving Feed


- Delivery Weight Errors
- Wind
- Birds
- Tires and Tracking
- Mixing Errors & Scale Accuracy
- Feed Refusals & Feed Bunk Management


Impact of Precision Feeding Strategies on Whole Farm Nutrient Balance and Feeding Management Beverly Gwen Cox Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Dairy Science

Robert E. James Michael L. McGilliard Katharine F. Knowlton Mark D. Hanigan R. Michael Akers

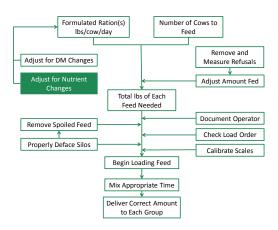
April 13, 2007 Blacksburg, Virginia


Keywords: (feed management software, whole farm nutrient balance, nitrogen, phosphorus)

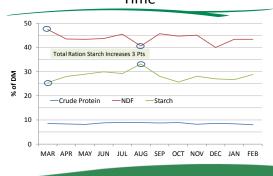
Dry Matter Variability

Silage DM Changes Over Time

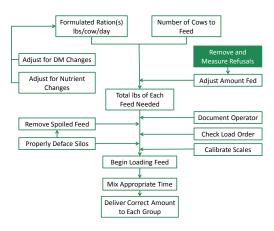
Energy Corrected Milk (lbs) by Month (Jan '11-'12) Typical rule: that are used to indicate out-of-statistical control situations with control and warning limits are: 13 point high gendent the control limits (Cul): 2) 2 consecutive points lying beyond the warning limits (Vul), such as Dec 11 and Jan '12; 3) or more consecutive points lying beyond the warning limits (Vul): such as Dec 11 and Jan '12; 3) or more consecutive points lying one die of the mean, base of dainty back to Aug; or 4) 5 or 6 consecutive points lying one die of the mean, base of dainty back to Oct. 95 90 Actual Milk Historical Avg Milk --- UWL -- LWL --- UVL --- LCL 75 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan


On-farm Methods for Determining Dry Matter

	Koster	Microwave	Dehydrator
Cost of equipment	\$255	\$50	\$50-100
Scale	\$50	\$50	\$50
Minutes/test	25 to 30	15 to 20	240
Multiple samples	no	no	yes
Attendance	+	+++	none

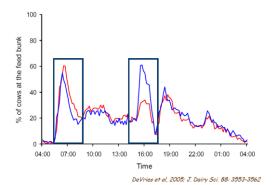


Corn Silage - Nutrient Changes Over Time



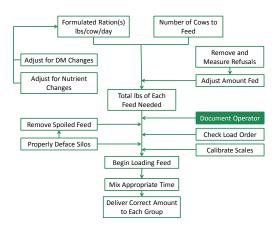
Forage Sampling Frequency by Herd Size

	Number of Milking Cows							
	50	100	200	400	800	1600		
Interval between								
sampling, days	30	14	14	7	7	7		
No. of sampling days								
per month	1	2	2	4	4	4		
No. of samples per								
sampling day per forage	1	1	2	2	3	3		
No. of samples per								
month per forage	1	2	4	8	12	12		


http://www.uwex.edu/ces/crops/uwforage/ForageSamplingFrequency-FOF.pdf

Feedbunk Management Slick-bunk Management · Feed animals exactly what they need to achieve zero leftovers • The idea of feeding lactating cows for a zero feed-refusal rate is usually met with resistance - Don't read bunks often enough - Overstock feeding space • If feed-refusal rate 2-3%, you may be ready to take the next step Feedbunk Scoring System Score Description 0 No feed remaining in the bunk Most of the feedbunk floor devoid of feed Less than 1" of feed across bottom of the bunk 2-3" of feed across the bottom of the bunk More than 50% of the feed remaining from last delivery 5 Feed virtually undisturbed and >90% remaining

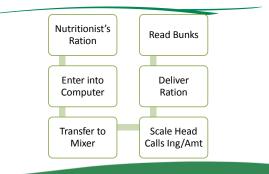
Delivery of feed twice per day



Transition Cow Index®

- System of evaluating transition cow management programs
- 1. Bunkspace in prefresh pen and fresh pen
- 2. Stall base (sand vs mattress)
- 3. Stall size, area
- 4. Move to calving pen (≤2 days vs 3+ days)
- 5. Screening method (4 categories)

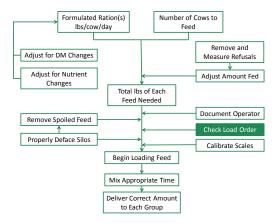
•			
•			
,			
•			


How Much and What Was Loaded, Mixed, and Delivered?

Feed Management Software

- TMR Tracker (Digi-Star, Fort Atkinson, WI)
- EZfeed (DHI-Provo, Provo, UT)
- Feed Supervisor (WI)
- FeedWatch (Valley Ag Software, Tulare, CA)

Feed Management Software



TMR Tracker Load Report

Load: pen2		Call \	Λ/ t	Loade	ad M/t	Devi	ation		Price	
Ingredient	Time	Actual	Drv	Actual	Drv	Devi	%	Planned	Actual	Error
BIN4	09:36	851	779	850	778	-1	0.1%	\$202.54	\$202.30	\$-0.24
PMIX	09:42	3759	2357	3750	2351	-9	0.2%	\$287.42	\$286.74	\$-0.69
HLG22	09:44	1963	824	1950	819	-13	0.7%	\$53.98	\$53.63	\$-0.36
CSL7	09:46	2703	973	2705	974	2	0.1%	\$54.06	\$54.10	\$0.0
CSL8	09:47	2780	973	2785	975	5	0.2%	\$55.60	\$55.70	\$0.10
Total		12056	5906	12040	5897	-16	0.3%	\$653.60	\$652.46	\$-1.14
Delivery: p	en2pm	Call \	٨t	Delive	ered Wt	Devi	ation		Price	
Pen	Time						%	Planned	Actual	Error
2	09:56	12056		11840		-216	1.8%	\$653.57	\$641.62	\$-11.95
Total		12056		11840		-216	1.8%	\$653.57	\$641.62	S-11 94

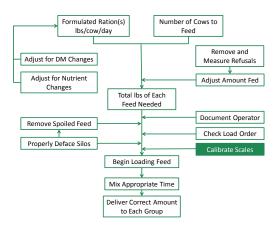
Daily Emailed - Customizable Report

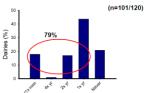
<u>Digi-</u>	<u>Star</u>	*	Po	nd Hill	Dairy		Februar	y 14, 20	12 23:00
			DM I	ntake p	er He	ad			
			Feb (9, 2012 - F	eb 14, 20	112			
Date	Call Wt	Delivered Wt	Dry Wt	# Animals	Price	Price/Anima	al W/B	W/B%	DMI
Pen: 08,8									
02/09/2012	3,020	3,015	1,213	39	\$146.79	\$3.76	0	0.00	31,11
02/10/2012	2,704	2,710	1,097	37	\$133.16	\$3.60	0	0.00	29.65
02/11/2012	2,631	2,580	1,052	36	\$127.58	\$3.54	0	0.00	29.21
02/12/2012	2,704	2,735	1,089	36	\$132.46	\$3.68	0	0.00	30.26
02/13/2012	2,479	2,485	987	33	\$122.12	\$3.70	0	0.00	29.92
AVG	2,708	2,705	1,088	36	\$132.42	\$0.27	0		30.03
Total	13,538	13,525	5,438	181	\$662.10	\$3.66	0		150.14
Pen : 1,1									
02/09/2012	647	660	297	10	\$40.29	\$4.03	0	0.00	29.70
02/10/2012	617	645	294	10	\$39.89	\$3.99	0	0.00	29.36
02/11/2012	802	805	368	13	\$50.38	\$3.88	0	0.00	28.33
02/12/2012	829	845	377	13	\$52.70	\$4.05	0	0.00	28.96
02/13/2012	893	910	399	14	\$55.15	\$3.94	0	0.00	28.49
AVG	758	773	347	12	\$47.68	\$0.25	0		28.97
Total	3,788	3.865	1.734	60	\$238.41	\$3.97	0		144.84

Loading Sequence

TMR Mixer Analysis for Proper Mixer Choice

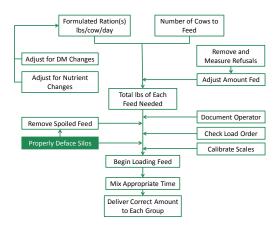
Dairy-Milking, Dry Cow, and Heifer Rations


Mixers		Com	plete Rat	ions		Rati	ients	
Mixer Type & Model	All haylage, com silage, concentrates	Up to 20% dry hay*, haylage, corn silage, concentrate	20-50% dry hay*, haylage, com silage, concentrate	Over 50% dry hay*, haylage, corn sitage, concentrate	Balage, haylage, com silage, concentrates	Pre-mixing of concentrates	Round bales (unprocessed)	Square bales (unprocessed)
4-Auger	<u>··</u>	<u></u>	\odot	<u>··</u>	0	$\overline{\cdot \cdot \cdot}$	0	<u></u>
Reel	*	*	0	0	0	*	0	<u></u>
Vertical			\Rightarrow	\Rightarrow	*		\Rightarrow	\Rightarrow


*Dry hay is good-quality alfalfa hay, both small or large square bales

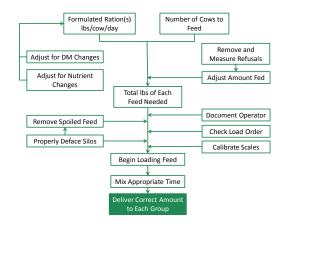
This chart is a general guideline only. Individual rations vary for every operation and will affect your mixer choice.

Source: http://www.kuhnnorthamerica.com/us/product-tips-tmr-mixer-guide.html



How often do you calibrate the mixer wagon scale?

Frequency of checking mixer scale


Seventy-nine percent of producers checked the mixer scale at least once a year. But, only 19 % checked it at least monthly. The mixer wagon was calibrated by an outside service (60%) or an in house employee (40%)

Properly Managed Face

Thank You