Maintaining Feed Quality

Joseph S. Moritz, PhD Associate Professor and State Extension Specialist West Virginia University Morgantown, WV

West Virginia University Appointment

Maintaining feed quality

Pellet formation

Causes starch to gelatinize and proteins to gel

Techniques exist to improve pellet quality

- These techniques are well documented in the literature
- However, legitimate concerns exist with past pelleting research

Concerns with past pelleting research

- Few studies adequately describe pelleting techniques
- Past pelleting / feeding research does utilize current genotypes
- Few studies differentiate between effects on feed form and nutrient availability (negative or positive)

Strategy 1. Slow down production rate

- Buchanan, N. P., and J. S. Moritz. "The effects of altering diet formulation and manufacturing technique on pellet quality." *The Journal of Applied Poultry Research* 2010 19: 112-120.
- Buchanan, N. P., and J. S. Moritz. "The effects of diet formulation, manufacturing technique, and antibiotic inclusion on broiler performance and intestinal morphology." *The Journal of* Applied Poultry Research 2010 19: 121-131.
- Lilly, K.G.S., C. K. Gehring, K. R. Beaman, and J. S. Moritz. "Examining the relationship between pellet quality, broiler performance, and bird sex." The Journal of Applied Poultry Research 2011 20: 231-239.

strategy 2. Use a thicker pellet die

Buchanan, N. P., and J. S. Moritz. "The effects of altering diet formulation and manufacturing technique on pellet quality." *The Journal of Applied Poultry Research* 2010 19:112-120.

- Buchanan, N. P., and J. S. Moritz. "The effects of diet formulation, manufacturing technique, and antibiotic inclusion on broiler performance and intestinal morphology." *The Journal of Applied Poultry Research* 2010 19: 121-131.
- Hott, J.M., N. P. Buchanan, S. E. Cutlip, and J. S. Moritz. "The Effect of Moisture Addition with a Mold Inhibitor on Pellet Quality, Feed Manufacture, and Broiler Performance." The Journal of Applied Poultry Research 2008 17: 262-271.

strategy 3. Increase steam conditioning temperature

Cutlip, S. E., J. M. Hott, N. P. Buchanan, A. L. Rack, J. D. Latshaw, and J. S. Moritz. "The effect of steam conditioning practices on pellet quality and growing broiler nutritional value." *The Journal of Applied Poultry Research* 2008 17: 241-69.

 Lilly, K.G.S., C. K. Gehring, K. R. Beaman, and J. S. Moritz. "Examining the relationship between pellet quality, broiler performance, and bird sex." *The Journal of Applied Poultry Research* 2011 20: 231-239.

strategy 3. Increase steam conditioning temperature

Every 30°F increase in temperature 1% moisture is added

lf Mash is 13% moisture

Choke point of the die is 18% moisture

Then

I should stay below 190°F

Strategy 4. Use a pellet binder Fairchild, F. and D. Greer. Pelleting with precise mixer moisture control. *Feed Int.* (1999) 20(8):32-36. Hott, J.M., N. P. Buchann, S. E. Cutlig and J. S. Moritz. "The Effect of Molsture Addition with a Mold Inhibitor on Pellet Quality, Feed Manufacture, and Broiler Performance." The Journal of Applied Poultry Research (2008) 17: 26-271.

- N. P. Buchanan and J. S. Moritz. Main effects and interactions of varying formulation protein, fiber, and moisture on feed manufacture and pellet quality. The Journal of Applied Poultry Research (2009) 18: 274-283.
- Gehring, C. K., J. Jaczynski, and J. S. Moritz. "Improvement of pellet quality with proteins recovered from whole fish using isoelectric solubilizationprecipitation." *The Journal of Applied Poultry Research* (2009) 18: 418-431.

strategy 5. Decrease corn particle size

- Reece, F. N., B. D. Lott, and J. W. Deaton. "Effects of environmental temperature and corn particle size on response of broilers to pelleted feed." *Poultry Science* 65 (1986): 636-41.
- Wondra, K. J., J. D. Hancock, K. C. Behnke, R. H. Hines, and C. R. Stark. "Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs." *Journal of Animal Science* 73 (1995): 757-63.

Corn ground to 600 microns or less has been suggested to maximize pellet quality

Strategy 6. Manipulate diet formulation

- Briggs, J.L., DE Maier, BA Watkins, and KC Behnke. Effect of ingredients and processing parameters on pellet quality. *Poultry Science*. (1999) 78: 1464-1471.
- Buchanan, N.P. and J. S. Moritz. Main effects and interactions of varying formulation protein, fiber, and moisture on feed manufacture and pellet quality. *The Journal of Applied Poultry Research* (2009) 18: 274-283.
- Buchanan, N. P., and J. S. Moritz. "The effects of altering diet formulation and manufacturing technique on pellet quality." The Journal of Applied Poultry Research 2010 19:112-120.

- Buchanan, N. P., and J. S. Moritz. "The effects of diet formulation, manufacturing technique, and antibiotic inclusion on broiler performance and intestinal morphology." The Journal of Applied Poultry Research 2010 19: 121-131.
- Gehring, C. K., K.G.S. Lilly, L.K. Worley, K.R. Beaman, S.A. Loop, and J.S. Moritz. "Increasing mixer-added fat improves exogenous enzyme efficacy and broiler performance." *Journal* of Applied Poultry Research 2011 20:75-89.

Feed Form Study (broilers)

- Pellets were produced using 200°F conditioning temperature, 1.77x 3/16 in die, 80 psig steam, and a slow production rate
- Fines were produced by grinding pellets with a roller mill
- 0:100 pellets to fines
- 30:70 pellets to fines
- 60:40 pellets to fines
- 90:10 pellets to fines

3x4 factorial study

Economic analysis using grower period feed intake and carcass gain					
Feed form treatments (pellet : fine)	21d chick weight (lb)	38d carcass weight (Ib)	21-38d feed intake/bird (lb)	\$/lb of carcass weight	Relative difference between GP and pelleted treatments (\$/Ib)
GP (0:100)	1.71	3.11	5.26	0.371	00
LPQ (30:70)	1.63	3.17	5.33	0.365	-0.006
MPQ (60:40)	1.64	3.23	5.49	0.366	-0.005
HPQ (90:10)	1.64	3.32	5.45	0.350	-0.021
\$300 feed intake					
S/ID OF Carcass weight = x 2000 lbs feed [carcass weight- (60% x 21d chick weight)] ¹					hick weight)] ¹
¹ 60% of 21d chick weight is an estimated carcass weight of 21d chicks ²⁰					

Feed manufacture and lysine availability study (broilers)

- 2 x 2 x 2 Factorial Design
 - 2 Production Rate (0.6 or 0.9 ton/hr)
 - 2 Die Thickness (1.5 or 1.77 in)
 - 2 MAF level (0.5 or 3%)
- Three additional treatments
 - Lower lysine (80% of Cobb-Vantress recommendation)
 - Unprocessed Mash
 - Double-pelleted

Manufacture Considerations

- Create the best pellet possible; however, consider...
 - Feed Enzymes (if added at the mixer)
 Enzyme companies can provide post pellet enzyme activity data
 - Amino acids
 - Universities can provide digestible amino acid data

Distillers Dried Grains w/ Solubles (DDGS)

• Broiler Finisher Diet Formulations

	No DDGS	Low DDGS	High DDGS
% Corn	75	68	60
% DDGS	0	10	20
% Fat	1.6	2	2.4

Distillers Dried Grains w/ Solubles (DDGS)

•	Broiler Grower	Diet Formu	lations
		DICCIONNA	

	No DDGS	High DDGS
% Corn	64	39
% DDGS	0	30
% Fat	1.9	3.9
% Tri Cal Phos	1.4	0.7

-			
-			

Distillers Dried Grains w/ Solubles (DDGS)

- If high pellet quality is not obtainable, then pellet quality considerations become less important
- If throughput is a greater economical issue then remember all sand is not created equal and feed phosphate addition may be necessary

Inorganic Feed Phosphates

- Monocalcium Phosphate - 21 P, 16 Ca
- Dicalcium Phosphate - 18.5 P, 20 Ca
- Tricalcium Phosphate (Defluorinated Phosphate) – 18 P, 28 Ca

Diets were formulated to Cobb 500 specifications					
Ingredients	Monocal P diet (%)	Dical P diet (%)	Trical P diet (%)		
Corn	57.89	58.00	59.08		
Soybean meal (48%)	36.06	36.04	35.84		
Soybean oil	1.89	1.86	1.57		
Feed phosphate	1.66	1.89	1.94		
Limestone	1.37	1.09	0.66		
Salt	0.47	0.47	0.24		
Vitamin mineral premix	0.25	0.25	0.25		
DL – methionine	0.23	0.23	0.23		
Coban 60 (coccidiostat)	0.08	0.08	0.08		
BMD (antibiotic)	0.05	0.05	0.05		
Lysine	0.04	0.04	0.05		
Threonine	0.003	0.003	0.004		

Inorganic Feed Phosphates

Take-home message

- Pellet quality has economic importance as long as nutrition is not compromised
- High DDGS inclusion can decrease pellet quality as well as throughput and these problems may be difficult to simultaneously alleviate through changes in manufacture strategy

Thank you

