Advances in Trace Mineral Nutrition

Jerry W. Spears North Carolina State University

Trace Minerals – What is Important

- Provide adequate amounts of bioavailable trace minerals to meet requirements
 - Safety margin
- Avoid trace mineral toxicies (imbalances)
 - Clinical
 - Subclinical

Outline of Presentation

- Chromium in dairy nutrition
- High dietary iron and possible consequences
- Manganese requirements

Chromium

- 1959 Schwartz and Mertz reported that trivalent chromium was a factor in brewers yeast that corrected impaired glucose metabolism in rats fed torula yeast based-diets
- 1992-present Numerous reports of responses in swine and cattle to chromium supplementation
- July 2009 FDA CVM issues a regulatory discretion letter permitting the addition of Chromium Propionate to cattle diets (0.5 mg/kg)
- First new trace mineral permitted as a supplement in cattle diets since selenium in 1979

		-Cr	+Cr	Δ	
Hayirli et al., 2001					
	DMI, kg/d	13.8	17.2	3.4	
	Milk,kg/d	33.5	38.5	5.0	
McNamara and Va	ldez, 2005				
	DMI, kg/d	17.0	18.7	1.8	
	Milk,kg/d	40.8	41.6	0.8	
Smith et al., 2005					
	DMI, kg/d	18.2	19.7	1.5	
	Milk,kg/d	40.3	42.8	2.5	
Sadri et al., 2009					
	DMI, kg/d	17.6	18.1	0.5	
	Milk,kg/d	34.6	36.5	1.9	

Chromium Supplementation and Performance of Lactating Dairy Cows Under Heat Stress^a

	Treatment		
_	Control	Chromium	
DMI, kg/d	19.6 ^b	21.2 ^c	
Milk yield, kg/d	29.9 ^b	33.2 ^c	
^a Chromium was suppl 120-130 days postpartum. 29.9 ± 2.3 ^o C; Average min ^{b,c} (P < 0.01).	emented for 70 days be Average maximum ter imum temperature, 24.	eginning at nperature, .8 ± 2.6ºC.	
	Al-Saiady	et al. (2004)	

Effect of Chromium Supplementation on Pregnancy Rate in Primiparous Dairy Cows

	Control	Chromium	P-value
Pregnancy rate, %			
Exp 1	50(3/6)	100(6/6)	0.05
Exp 2	78(7/9)	89(8/9)	0.53
		Yang	et al., 1996

Effect of Providing Chromium in a Free Choice Mine on Pregnancy Rate in Beef Cows ^a				
	Treatment			
	Control	Chromium	P-value	
Pregnancy rate, %				
Overall	81	89	0.06	
≥ 6 years of age	86(28) ^b	83(29)	0.76	
4 and 5-year olds	74(19)	90(20)	0.19	
2 and 3-year olds	81(26)	96(24)	0.13	

 ^aStudy was conducted from approximately 75 d prepartum (Sept) until calves were weaned in June.
^bNumber of cows

Stahlhut et al. (2006)

	Supplemental chromium			
	mg/cow/d	0	3.7	7.6
	mg/kg DM	0	0.20	0.39
DMI, kg/d ^a		18.2	18.9	19.7
Milk yield, kg/dª		40.3	40.5	42.8
Prepartum BW, kg		722	724	724
Postpartum BW, kg ^a		614	620	639
^a Linear effect of Cr (P < 0	0.05).			

	Deer cow	5	
	Trea	itment	
Days postpartum	Control	Chromium	P-value
Plasma NEFA	meq/dL		
- 48	297	220	0.20
- 18	451	377	0.21
21	569	389	0.01
79	669	373	0.01
134	249	273	0.69
203	289	248	0.49

Interrelationship Between Chromium and Stress

Dietary Chromium in Receiving Diets and Performance and Morbidity of calves

	Supplemental Cr (CrY), mg/kg			
_	0	0.2	0.5	1.0
n	21	21	21	21
Gain, kg/d	0.66 ^a	0.84 ^b	0.70 ^{a,b}	0.84 ^b
DMI, kg/d	3.99 ^a	4.66 ^b	3.91 ^a	4.57 ^b
Morbidity, %	52.4 ^a	14.3 ^b	33.3 ^a	47.6 ^a
^{a,b} (P < 0.05)				
		Moonsie-S	Shageer and Mov	wat, 1993

Chromium Content of Feedstuffs

	Chr	omium, mg/kg
Feedstuff	Mean	Range
Corn (13)	0.045	0.008 - 0.083
Soybean meal (5)	0.259	0.181 - 0.323
Distillers dried grain (4)	0.299	0.128 - 0.754
Wheat (1)	0.042	
Oats (1)	0.156	
Mono-dicalcium phosphate	100.0	

	Chror	nium, mg/kg
Feedstuff	Mean	Range
Corn silage (15)	0.201	0.068-0.453
Alfalfa hay (7)	0.466	0.200 - 0.990
Alfalfa haylage (6)	0.595	0.237 - 0.889
Soybean hulls (7)	0.574	0.262 - 1.014
Cottonseed hulls (4)	0.111	0.019-0.315
Cottonseed, whole (3)	0.073	0.031 - 0.155
Corn gluten (3)	0.675	0.347 - 1.282
Wheat midds (1)	0.155	
Wheat silage (1)	0.148	
Grass hay (1)	0.312	
Wheat straw (1)	0.178	
Rice hulls (1)	0.211	
Hominy feed (1)	0.0097	
Citrus pulp (1)	0.783	

High Dietary Iron (Bioavailable)

- Reduced manganese bioavailability
- Reduced copper status
- Impaired intestinal permeability
- Liver damage

Effect of dietary iron on copper status of calves^a

	Supplemental Fe (mg/kg)	
	0	800
Plasma Cu, mg/L	0.81	0.26
Liver Cu, mg/kg DM	61.9	6.5
Liver SOD, µg/mg protein	8.3	2.7

^aSamples were taken after diets were fed for 16 weeks.

Humphries et al., 1983

Iron Content of Selected Feedstuffs^a

	Iron, mg/kg	SD
Corn	54	53
Barley	70	60
Soybean meal	206	124
Phosphate supplements	10,000	
Alfalfa	619	617
Corn silage	104	109
Grass silage	331	324
Legume silage	367	490
Grass hay	156	157
Legume hay	286	270

	lron, mg/kg DM		
	Mean	Range	SD
Almond hulls	222	74-709	147
Beet pulp	290	204-447	76
Brewers grains	123	103-154	17
Canola meal	230	203-295	28
Corn gluten feed	122	80-152	24
Distillers grains	176	141-217	27
Cane molasses	171	123-277	47
Safflower meal	308	258-414	44
Soybean hulls	523	145-847	172
Wheat meal run	187	58-433	99

Iron Concentrations in By-Product Feedstuffs^a

How Bioavailable is Iron Found Naturally in Feeds?

- Phosphate supplements (50% relative to FeSO₄)
- Pasture?
- Harvested feeds (?)
- Soil (extremely low?)

-Ensiling increases bioavailability (low pH)

Effect of time and level of soil addition to corn silage on total and water – soluble iron concentrations

Soil Added	Time	Total Fe µg∕g DM	Water Soluble Fe		
%			µg/g DM	%	
Control (0)		54	8	14.7	
l	Before	1591	193	12.9	
l	After	1586	12	0.9	
5	Before	5498	435	7.6	
5	After	6830	15	0.2	

Ferritin is a Major Form of Iron in Soybeans and Possibly Other Legumes

• Bioavailability of iron from ferritin in soybeans has been shown to be equal to ferrous sulfate in humans

(Lonnerdal et al., 2006)

Iron Bioavailability from Common Feedstuffs

		Total Fe (mg/kg)	Ruminal Fe disa (%)		
Forages	n		3h	12h	24h
Corn silage	3	85	61.7	77.6	79.9
Wheat silage	2	56	55.4	72.0	76.9
Alfalfa hay	2	140	40.4	60.4	67.8
Alfalfa haylage	2	195	34.7	52.3	61.4
Grass hay	1	119	23.1		62.0
Wheat straw	1	634	30.4	40.5	40.8
Common bermuda	1	42	0.2	37.5	42.8
Gamma grass	1	31	0	0	7.3

		Total Fe (mg/kg)	Ruminal Fe disa (%)		
Feed stuff	n		3h	12h	24h
Soybean hull	2	373	75.8	92.4	96.7
Soybean meal	2	117	55.5	90.8	91.7
Wheat	1	28	27.7	79.8	85.5
Corn gluten	2	87	68.0	81.7	84.3
DDGS	2	72	51.0	74.1	80.9
Oat	1	61	41.5	63.9	69.6
Corn	2	33	33.5	57.9	63.8

Iron released following ruminal digestion of concentrate and by-product

Manganese Requirements

- Manganese recommendations in the Dairy NRC appear to underestimate requirements
 - * Lactating cows 12 14 mg/kg DM
 - * Late gestation 16 24 mg/kg DM

Effects of Dietary Manganese on Growth and Reproductive Performance of Beef Heifers^{a,b}

	Supplemental Mn, mg/kg			
	0	10	30	50
Gain, kg/d	0.98	0.97	0.98	1.01
DM intake, kg/d	10.2	9.8	10.2	10.4
Gain:feed	0.11	0.11	0.11	0.11
Average age at conception, d	431	436	432	432
Pregnancy rate, %	60	50	67	75
	(12/20)	(10/20)	(13/19)	(15/20)

Effect of dietary manganese concentration fed to beef heifers on performance of their offspring

	mg	/kg
Item	0	50
Birth weight, kg ^a	31.54	38.51
ADG, kg ^b	0.81	0.84

Observed signs of manganese deficiency in calves born to heifers fed low manganese diets

	Supplementa	l Mn, mg/kg	
Dbserved Sign ^a	0	50	Р
Disproportionate dwarfism ^b	3/7	0/6	0.08
Unsteadiness/weakness at birthc	3/7	0/6	0.08
Superior brachygnathism ^d	5/7	0/6	0.00
^a Data were pooled for calves across breeds. ^b Defined as calves that were smaller in stature w to their age and breed matched supplemented co ^c Defined as calves that trembled or shook when could be put off balance by a push of the hand. ^d Defined as calves that had an extended lower ja shortened nasomaxillary bones.	when compared ounterparts. walking and aw due to		

Lameness, Suspected Mn Deficiency

What factors may increase manganese requirements?

- Iron
- Calcium and Phosphorus

Congenital Joint Laxity and Dwarfism

- Field observations of Mn deficiency in Canada from late 1980's to 1990's
- Signs included joint laxity, dwarfism, domed foreheads, and superior brachygnathism
- Abnormal calves born to cows fed grass or red clover silage over winter
- Diets contained 50-60 mg Mn/kg DM
- Cows supplemented with hay produced no CJLD calves

Ribble et al., 1989 Hidiroglou et al., 1990

