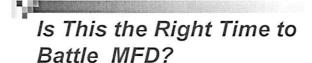
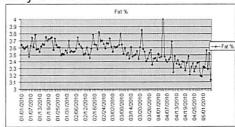

Becoming a Victim to MFD

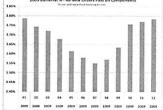
- One or more management weak links
- You are doing everything right, BUT


 □responding to changes in feed prices

 □limited availability of some feed ingredients


 □unexpected changes in nutrient composition of feed ingredients

- Am I satisfied with the herd's milk fat production and should I take the risk of messing up a good thing?
- I've seen a drop in milk fat percentage but is the drop in lbs of fat really large enough to affect my milk check?



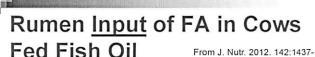
■ I've seen a drop in milk fat recently but is it a sustained trend or just part of the normal variability in fat tests?

Is This the Right Time to Battle MFD?

Is the drop in fat test I've seen a nutritional problem or could it be regular seasonal changes in lactation that occurs each year?

Cause of MFD

- MFD is caused by nutrition-driven changes in the rumen.
- Lipids in feed are metabolized by the rumen microbial population
 - □ leads to the formation of bioactive lipids.
 - □ bioactive lipids are referred to as conjugated linoleic acid or CLA

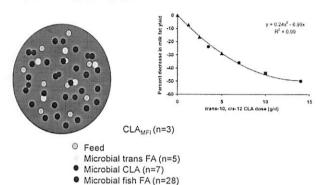


Unsaturated

fatty acids

g/d g/d C12:0 10.56 10.22 10.56 C14:0 13.27 11.10 13.27 C16:0 290.36 226.67 297.06 C16:1 4.65 4.57 4.76 C18:0 35.06 29.31 597.68 C18:1T 0.84 0.76 109.35 C18:1C 233.96 188.13 C18:2 495.57 477.97 C18:3 58.93 18.21 Other 17.33 58.88 Ration 1161.40 1023.37 1226.96

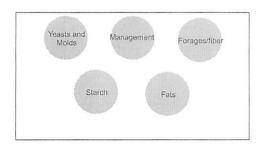
Saturated fatty acids

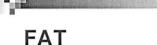

From J. Nutr. 2012, 142:1437-1448.

Feed C16 and C18 Sat\Unsat (n=10)

Rumen Output of FA in Cows Fed Fish Oil

From J. Nutr. 2012. 142:1437-1448.


Important Points About CLA


CLA - bioactive lipids made by microorganisms in the rumen from unsaturated fatty acids in the feed.

 $\mathsf{CLA}_{\mathsf{MFI}}$ – the three CLA produced in the rumen that are milk fat inhibitors and cause MFD.

Nutritional factors that affect the risk of MFD

Too much fat in the diet of dairy cows is a classic cause of MFD.

	CON	SBO	
DMI, lb/d	47.3	43.6	ĺ
Milk, lb/d	66.6	63.3	
Milk fat, lb/d	2.46	1.87*	
Milk fat, %	3.53	2.73*	

*CON and SBO diets differed (P < 0.05). From Huang et al., 2008. J. Dairy Sci. 91:260–270.

Temptations to push the limit on feeding fat

- When prices are favorable for high-fat byproducts
- When grain prices reach record levels making commercial fats more competitive
- When the farm has access to (perceptually inexpensive) high-fat waste products from a nearby food processing plant.
- How high is too high??

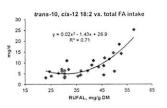
Resolve MFD – Manage Fat Intake

- The amount of fat fed is most important control point.
- Consider all sources of fat
 □ Fat supplements including byproducts
 □ Basal ingredients
- Adjust added fat accounting for
 □ Fat contribution from grains and forages
 □ Unsaturation of fat supplements
 □ NDF in TMR

Rumen Unsaturated Fatty Acid Load

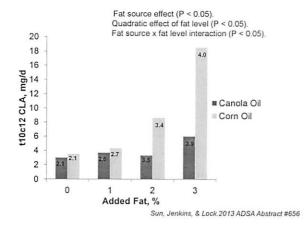
RUFAL

(C18:1 + C18:2 + C18:3)

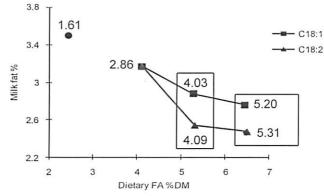

A Way to Account for All High Risk Fatty Acids

Dry Matter:	54.2%		
Mostore	45.2%		
		As Lamping No.	Dry Matter Seas N
	Fet (ether extract)	N/A	N/A
9	Pet (acid hydrolysis)	N/A	5/4
2	Total Fatty Acid	3.00	5.54
			Dry Matter
		Relative Seria N	Datture Spiesch
C12.6	LAURE Add	60.0	0.03
C14.0	Myriotic Acid	9.15	0.04
C16.6	Palestic Acid	22.47	1.30
£15.1	Pearstolercació	9.47	9/65
C1110	Stewic Acid	2.84	0.16
C23.1	Clek Acid	25.06	1.59
C18.2	Linoleic Acid	4190	2.52
6.812	Linchenia Acid	4.54	0.27
520.0	AntidoAcid	0.52	0.03
C271	11-Eusteric And	0.16	2.01
522.2	11-14 Ecosadienoic Acid	N/D	N/P
C2210	Reheriz Acid	0.94	0.02
C22:1	truck had	N/D	N/2
C24.0	Elghoreric Acid	0.41	8.02
224.1	Nervenic Attid	N/D	N/P
Total		100.0	5.54

RUFAL = 3.93%



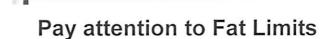
- RUFAL < 3.5%
 - □ Total FA intake on lower side
 - □ IF have MFD look for other causes first
 - Might have room for more fat if production numbers are good.
- RUFAL > 3.5%
 - ☐ Total FA intake on higher side
 - $\hfill\Box$ See where fat is coming from
 - Consider backing off a bit if MFD problems



Sun, Jenkins, & Lock.2013 ADSA Abstract #656

See where fat is coming from!

See where fat is coming from!



From He et al. (2012) J. Dairy Sci. 95:1447-1461.

Fatty Acids in Rye and Annual Ryegrass Pasture

Pasture	Planted	Grazed	Initial FA, % DM	Final FA, %
Rye	October	Nov 18- Mar 17	6.8	4.7
Annual ryegrass	October	Mar 17 – June 3	4.5	1.8

Freeman-Pounders et al. 2009. Forage and Grazinglands. doi: 10.1094/FG-2009-0130-01-BR.

1. Limit the total fat consumed from all sources (basal ingredients plus fat supplements) so that

Ibs total fatty acid intake = Ibs milk fat produced

2. Limit high-risk fats so that

lbs. high-risk fatty acids = $\frac{4 * NDF * DMI}{UFA * 100}$

Where

NDF is % of the dairy TMR DMI is dry matter intake of cows in lbs/day UFA is % unsaturated fatty acids in the fat

http://virtusnutrition.com/. Click on the window labeled "What's Your Fat Feeding Strategy?"

Forage/Concentrate

- Particle Length
 - □ Bottom Pan of Penn State Shaker Box <47%
 - □ ~ 7% on top
- % forage >50%
- % forage NDF > 20%
- >50% cud chewing

Source of Forage

		Treatment	
	CS	CST	AST
DMI, lb/d	60.7	57.0	58.3
Milk, lb/d	98.8	97.5	95.9
Fat, %	3.12a	2.68b	3.32a
t10 18:1, %	0.75^{b}	2.15a	0.78^{6}

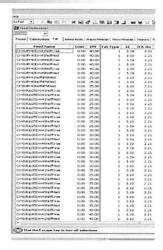
 $CS = 50\% com silage + 50\% conc \\ CST = 50\% com silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 25\% alfalfa silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 25\% alfalfa silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 25\% alfalfa silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 50\% conc + 2\% tallow \\ AST = 25\% com silage + 50\% conc + 2\% tallow \\ AST = 25\% conc + 2\% conc + 2\% tallow \\ AST = 25\% conc + 2\% conc$

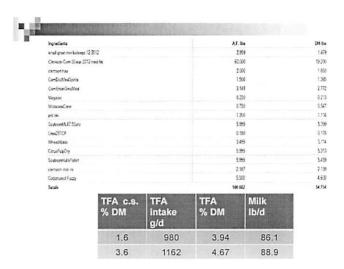
Onetti et al., 2004

Netherland Silage

■ Previous research has reported significant variation in FA concentration of forages

FA, % DM	Grass Silage	Corn Silage
Mean	1.9	2.0
Minimum	0.8	1.2
Maximum	3.3	3.5


Khan et al., 2012 Anim Feed Sci Tech. 174: 36-45



	TFA, %DM
Mean	2.5
Min	1.6
Max	3.6

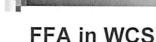
Klein, Ploetz, Jenkins, & Lock. 2013 ADSA Abstract #73

Feed Libraries - use the same fat values for all corn silages

FFA Increase Risk of MFD

	FFA, % of	total lipid	
	Fresh	Ensiled	Reference
Ryegrass	2	27-73	Elsgersma et al. 2003
Timothy	15	56	Vanhatalo et. al. 2007
Red Clover	8	45	Vanhatalo et. al. 2007

Plant lipases release FFA after cutting (Thomas, 1986) or during ensiling (Chow et al., 2004).

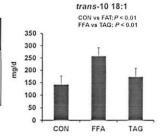


FFA in WCS

	WCS Source				
	Normal	No Heating	Overheated		
Moisture, %	9.4	10.6	11.9		
Oil, %	18.4	17.1	15.9		
FFA, % of oil	6.8	24.1	22.3		
DMI, kg/d					
Milk, kg/d					
Fat, %					

ab P < 0.05

Cooke et al. 2007. J. Dairy Sci. 90:2329.



	WCS Source				
	Normal	No Heating	Overheated		
Moisture, %	9.4	10.6	11.9		
Oil, %	18.4	17.1	15.9		
FFA, % of oil	6.8	24.1	22.3		
DMI, lb/d	47.5	48.4	51.7		
Milk, lb/d	77.0	74.8	77.2		
Fat, %	4.22ª	3.64 ^b	3.58b		

^{ab} P < 0.05 Cooke et al. 2007. J. Dairy Sci. 90:2329.

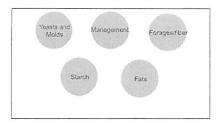
USA Corn Silage-75 corn silage samples from 2011 harvest

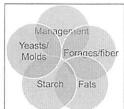
	TFA, %DM	FFA, %TFA
Mean	2.5	20
Min	1.6	13
Max	3.6	31

Klein, Ploetz, Jenkins, & Lock. 2013 ADSA Abstract #73

Higher Risk Corn Silage

■ High rates of starch degradability reaching 85% or more in a 7-hour in vitro test.

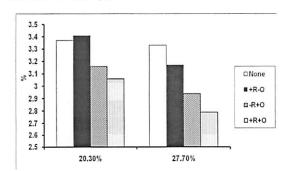

Average and Range for Qualitative Eva	that toris or Corn San					
тем	LOW	MED-LOW	AVERAGE	MED-HIGH	HIGH	SAMPLE
	- 2 SD	- 1 50		+ 1 5D	+ 2 50	
Storch Degradability, 7 HR	62.0	68.8	75.5	82.2	89.0	



■ High yeasts and molds. Alarms go off with yeast counts approaching 1 million cfu/g.

O Box	669 Maugansvil	le, MD 21767	301-790-198	0	Sample No :	8980042
		ANALYS	IS RESU	LTS		
	CORN SILAGE		As Sampled	Dry Matter	Unit	
	Moisture		73.7			
	Dry Matter		26.3		3	
	Mold and Yeast	counts are or	an as-received	basis		
	Mold Count	< 1000 cc	ol/gm			
	Yeast Count	> 100,000	0,000 col/gm			

Why Do I Still Sometimes Have MFD Problems Even When I Follow All The Proper Guidelines?



Grain x Monensin x Fat Interactions – Cow Study

- 80 Holsteins
- 2 x 2 x 2 factorial design
 - □ Two starch levels (27.7 and 20.3% of TMR)
 - □0 vs 13 ppm Rumensin
 - □0 vs 1.25% corn oil

Van Amburgh et al., 2008. Cornell Nutr. Conf.

Milk Fat %

Van Amburgh et al., 2008. Cornell Nutr. Conf.

Points to Remember

- CLA_{MFI} overproduction in the rumen leads to MFD.
- Feeding management controls MFD by limiting accumulation of CLA_{MFI} in the rumen.
- No single dietary factor is responsible for MFD.
 interactions among various dietary components can increase the rumen outflow of CLA_{MFI}.
- All risks have to be considered with regard to the combination of factors at play in a given ration formulation and with regard to the limitations of management and physical plant.