

Cł	aracteristics	of calf and colostrum
Variable		Heat-treated (n=553)
Calving ease (1-5)	1.4	1.4
Age at 1 st feeding (min)	47.5	50.0
IgG in Colostrum (mg/ml)	63.9	61.1
TPC in colostrum (cfu/ml)	515,000	2,100
TCC in colostrum (cfu/ml)	51,500	90
Dor	nahue et al., 2012	Ubginia Sech

	inte	sune
Calf body weight	40 kg	 Why the overkill in
Plasma volume (9% of BW)	3.6 liters	colostrum feeding?
Minimum Plasma concentration	10 g/L	
Apparent efficiency of absorption	35 %	When are conditions
Required IgG intake $(3.6 \times 10 / 0.35)$	103 grams	optimal?
Colostral concentration	50 g/L	
Required amount to feed	2.1 L	
Figure 1. Estimated colostrum require calf to achieve minimum plasma IgG co 10 g/L at 24 hours of age.	d by a 40 kg incentration of	

lt's moi	re than I	gG	
	Colos	trum	
	Milking 1	Milking 6	Milk
Dry matter %	24.0	15.3	12.2
Energy Mcal/lb of milk	0.65	0.41	0.30
Protein %	13.3	4.7	3.2
IgG%	8.1	.8	2. >
Fat %	6.4	5.1	3.9
Lactose %	2.5	4.6	4.9 Wietula Rek

	Colos	trum	
	Milking 1	Milking 6	Milk
IGF-I µg/kg milk	304	60	< 2
IGF-II μg/kg milk	149	< 1	< 1
Insulin µg/kg milk	65	7	1
Prolactin µg/kg milk	280	-	15
γ-GT µkat/kg milk	374	70	5
Lactoferrin a/ka milk	1.8	-	0.06

Wight Rech

Г

What about colostrum replacers?

- 250 g of IgG /calf in two feedings from pooled maternal colostrum (MC) or serum derived colostrum replacer (SCR)
 - -120g/day vs. +51.6g/day
- Day 0 8 higher ADG calves fed MC
- > DAY 15 no difference.
- Higher feed efficiency for calves fed MC, most due to first 8 days.

Ubginla Rech

What about colostrum replacers?

- Two studies feeding 150 200 g IgG/calf

 higher apparent efficiency of absorption for MC vs. SCR. Fidler et al., 2011
- Impact on health? Swan et al, 2007
 - 457 calves on 12 days fed either 125 g of IgG from SCR or 3.8 L of MC.
 - Higher serum IgG and less passive transfer failure in MC calves
 - No difference in morbidity or mortality.

Management

- Dam's own colostrum best manage for early intake of low bacteria, high IgG colostrum
- Optimize environment for the dry cow and the calf moisture, heat and cold stress.
- Utilize colostrum replacers when the above is not optimal.

Unginia Rech

Nutritional management of the preweaned calf

Meeting the nutrient requirements for growth (?), immune function, ?????

Two concerns in meeting nutrient requirements

- What influences the nutrient requirements of the preweaned calf
- How accurately do we mix and deliver the nutrients to the calf?

Nutrient Requirements

- Body size
- Rate of gain desired??
- Environment
- Management

Ubginia Rech

Influence of body weight and temperature on maintenance requirements (Mcal NE/day)

Body weight	O° F	32°F	68°F	Increase in NE
60 lb. calf	1.99	1.58	1.02	95%
90 lb. calf	2.69	2.14	1.39	93%

Source: 2001 NRC, Nutrient Requirements for Dairy

Amount of Milk (Ib) Required to Meet Maintenance Requirements					
		Temperature ° F			
	68	60	32	14	
Body weight Ib					
55	3.6	4.6	5.6	6.8	
110	6.2	7.8	9.4	11.4	
165	8.4	10.5	12.9	15.9	
	Gal	lon of milk =	8.62 lb.		

How does management influence nutrient requirements?

- Temperature
- Moisture
- Housing

The newborn calf

Impact of the following?

- Stress of calving
- Calving environment
- Delay in nutrient intake
- Body composition of the calf - % body fat??

Impact on nutrient status of the calf???

Wightalkch

lb of fat

.40

.40

.58

Unginia Tech

.20

.20

.29

	Energ whole m	iy allowabl nilk vs. 20: Week 1	le gain 20 CMR	
Calf	Whole	ə milk	20:20	Milk
	68 F	32 F	68 F	32 F
80 lb. calf – week 1 1 lb. DMI	.85 lb/day .19 lb/day		.64 lb/day	No gain
80 lb. calf week 1 1.5 lb. DMI	1.68 lb/day	1.15 lb/day	1.15 lb. / day	.85 lb. /day
Additional challenges influencing nutrient requirements? Temperature < 32F Bedding adequacy?				
				Unginia le

Quality of incoming milk (Scott, 2006)

.40

.56

.52

Location	- Aerobic plate count		Fat %		Protein %	
	Low	High	Low	High	Low	High
East	300,000	1 x 10 ⁸	1.5%	4.5%	2.7%	3.8%
West	26,000	5.9 x 10 ⁶	1.2%	12.1%	2.7%	4.7%
WI	6,000	7.2 x 10 ⁷	2.8%	4.7%	2. 9%	5.1%

ltem	2x Feeding	3x Feeding	P value
PW Cain (1, 42 days) kg	25.1	20.8	0.0001
bw Gain (1-42 days), kg	23.1	29.0	0.0001
Hip height gain (1–42 days), cm	8.6	10.3	0.0027
Feed efficiency Gain/DM intake, 1–42 days	0.52	0.61	0.0001
Number weaned	32	34	0.3070
Number lactating	28	34	0.0250
A ma first solution date	724	71.9	0 2278

 Impact of ingredient equality Milk replacer protein and fat? Digestion Waste or whole milk quality – SCC, antibiotic level, bacteria count, DM%
Unginia Brita Sant Astronomics

Question calf feeding management?

- Colostrum management and feeding?
- Where are weak areas in calf management
 - Nutrient intake amount of solids and consistency.
 - Environment optimized to reduce maintenance expenses.

Ubginia/Rech