

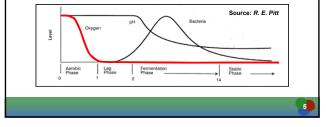
Why Choose Baled Silage over Hay?

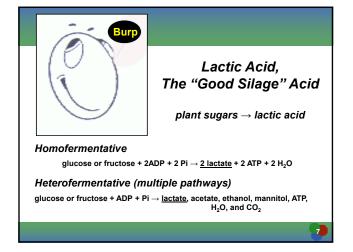
• well-made baled silage will often exhibit better quality characteristics than corresponding hays

- less leaf loss (legumes)
- less wilting time required
- reduced risk/exposure to rain damage
- little or no spontaneous heating
- no weathering after baling (outdoor storage)

Regardless of silo type, <u>most</u> management principles are the same.

 start with highquality forage


2



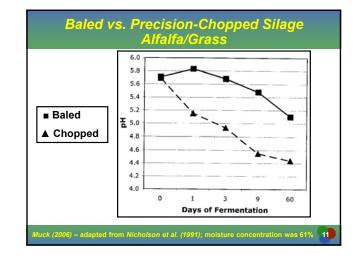
Goal: Silage Preservation

• Establish anaerobiosis (no oxygen)

- trapped oxygen is removed through respiration of still-functioning plant cells
- sealing prevents air from re-entering and circulating throughout the silo, thereby preventing decay, losses of DM and energy, and (possibly) production of toxic products

Goal: Silage Preservation • Establish conditions that encourage proliferation of desirable microorganisms, but discourage undesirable ones desirable (lactic-acid bacteria) undesirable (clostridia, enterobacteria) • Source: R. E. Pitt Level Aerobic Phase Lag . Phase Fermer Phase Stable Ideally, the goal is to establish a stable silage mass by lowering pH and maintaining anaerobic conditions! 6

Typical Characteristics of Chopped Grass Silages in Northern Europe from Different Fermentation Types


Item	Lactic Acid	Wilted	Clostridial	Acetic Acid	Sterilized
DM, %	19.0	30.8	17.0	17.6	21.2
pH	3.9	4.2	5.2	4.8	5.1
Protein N, % of N	23.5	28.9	35.3	44.0	74.0
Ammonia N, % of N	7.8	8.3	24.6	12.8	3.0
Lactic Acid, %	10.2	5.9	0.1	3.4	2.6
Acetic Acid, %	3.6	2.4	2.4	9.7	1.0
Butyric Acid, %	0.1	0.1	3.5	0.2	0.1
WSC, %	1.0	4.8	0.6	0.3	13.3

adapted from McDonald and Edwards (1976)

Baled Silage vs. Precision-Chopped Haylage How Do They Compare? • silage fermentation is restricted by the lower moisture content of baled silage

· lack of chopping action in baled silages forces sugars to diffuse from inside the plant to reach lactic-acid producing bacteria located on the outside of the forage

• although dependent on many factors, baled silage may be less dense (DM/ft³) than some other (chopped) silo types, which also restricts availability of sugars to lactic-acid producing bacteria

Fermentation Characteristics of Alfalfa Forages Ensiled as Large-Round Bales or as Precision-Chopped Silages¹

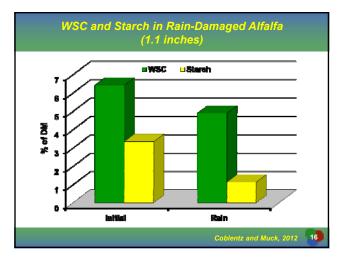
			Day of F	ermentation	1
Item	Туре	0	3	9	58
Lactic Acid, %	Baled	0.20	0.31	1.14	1.85
	Chopped	0.26	1.73	2.83	4.97
Acetic Acid, %	Baled	0.65	0.69	0.79	1.12
	Chopped	0.68	1.20	1.52	1.83
Total Acids, %	Baled	0.51	1.43	2.61	3.61
	Chopped	0.44	3.63	4.90	7.30

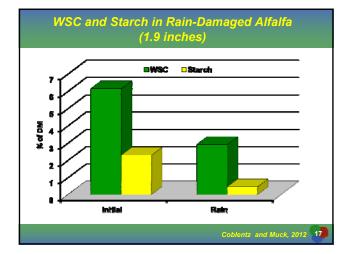
Nicholson et al. (1991)

9

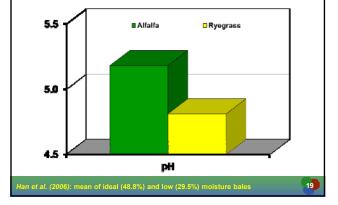
Plant Factors

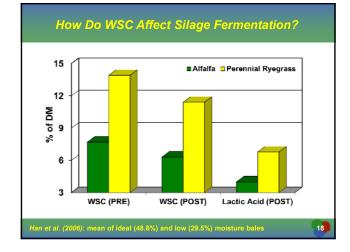
- Water Soluble Carbohydrates (WSC)
- Buffering Capacity

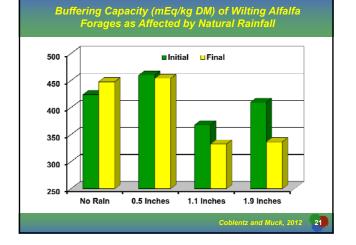



Fermentable S Water-Soluble Carbohy	
Sources of Variation for WSC Species Cultivar Within Species	Lactic Acid, The "Good Silage" Acid plant sugars Jactic acid
Stage of Growth Time of Day Climate	A CONTRACT
Drought Frost Events N Fertilization	
Rain Poor/Extended Wilting Conditions Management	
	13

Water Soluble Carbohydrates (WSC) for Fall-Grown Oat as Affected by N Fertilization Rate


N Fertilization Rate	2011	2012
lbs N/acre	% 0	f DM
0	12.4	19.3
22	12.3	17.4
45	11.5	17.4
67	10.0	16.5
90	10.1	16.3
SEM	0.76	0.53
Contrast	P	> F
Linear	0.004	< 0.001
Quadratic	ns	ns
Cubic	ns	ns
¹ ns, non-significant (P > 0.05)		
		Coblentz et al. (2014


Crop/Species	WSC, % of DM
Corn Silage	10 - 20
Forage Sorghum	10 - 20
udan, Sorghum-Sudan, Millet	10 - 15
Rye, Oat, Wheat, Triticale	8 - 12
Ryegrass	8 - 12
Alfalfa	4 - 7
Bermudagrass, Stargrass	2 - 4
Bahiagrass	< 5
Limpograss	< 5
Perennial Peanut	1 - 4

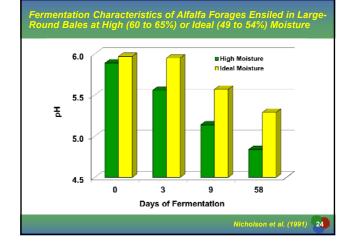


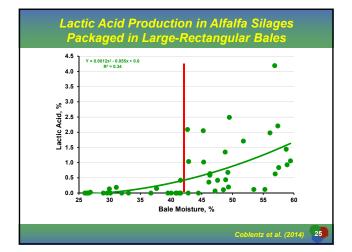
How Do WSC Affect Silage Fermentation?

p/Species	Range	Mean
orn Silage	149-225	185
ſimothy	188-342	265
Dat (Headed)	300-349	323
hardgrass	247-424	335
ed Clover		350
Oat (Boot)	360-371	366
n Ryegrass	265-589	366
(mid-bloom)	313-482	370
nial Ryegrass	257-558	380
(1/10 bloom)	367-508	438
Alfalfa	390-570	472
ite Clover		512

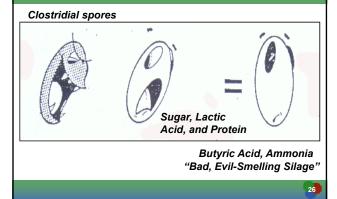
Fermentation Characteristics of Alfalfa Ensiled in Large-Round Bales at High (60 to 65%) or Ideal (49 to 54%) Moisture

Item Moisture 0 3 9 Lactic Acid, % High 0.40 1.63 2.45 Ideal 0.40 0.65 1.05 Acetic Acid, % High 1.02 1.30 1.55	58 3.80
Ideal 0.40 0.65 1.05	3.80
Acetic Acid, % High 1.02 1.30 1.55	2.84
	1.78
ldeal 0.89 0.91 1.09	1.16
Total Acids, % High 1.68 3.34 4.35	5.99
ldeal 1.55 1.87 2.45	4.37


Moisture Management for Baled Silage


Generally, baled silage should be packaged at 45 to 55% moisture (Shinners, 2003); the average for the whole field or group of bales should be about 50%.

moisture recommendations for chopped silages are < 70%

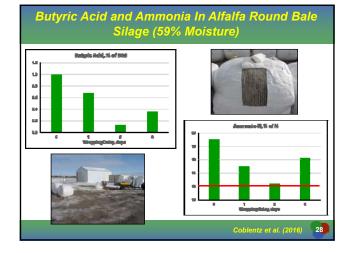

• production of silage fermentation acids is positively associated with moisture concentration

• as a result, baled silage fermentation is inherently restricted, resulting in a slower fermentation, and a greater (less-acidic) final pH

So Why Not Bale Forage Wetter?

- Safety
- Equipment/Baler
- Clostridial Fermentations

Coblentz et al. (2014) 25

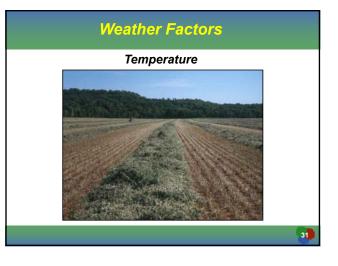

- direct cut forages
- immature, rapidly growing forages
- highly contaminated with dirt, manure, or both

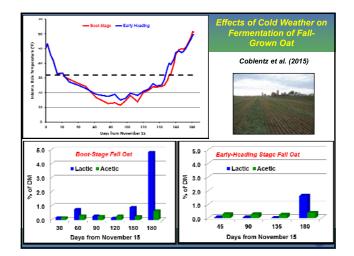
low sugar

- high buffering capacity
 - high protein
 - leguminous

non-homogenous forages (baled silage)

The best prevention is to wilt the forage prior to ensiling! As such, baled silage is generally at low risk.

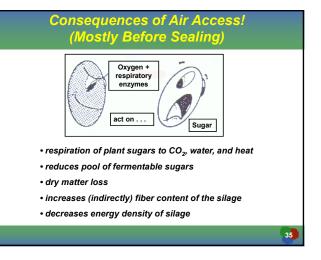


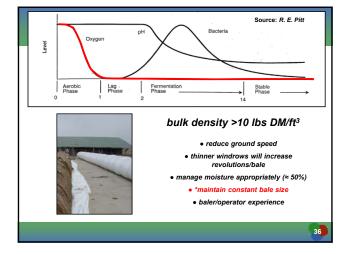

Clostridial Counts (log₁₀ genomic copies/g) for Pre-Ensiled and Post-Ensiled Alfalfa Forages Following Applications of Dairy Slurry Using qPCR Methods¹

Treatment	Pre	Post	Pre	Post
	Fie	FUSI	Fie	FUSI
Slurry Application				
No slurry	3.29	4.26	3.88	4.21
Stubble	4.10	5.17	5.06	5.28
1 week	4.48	5.41	4.85	5.45
2 weeks	4.75	5.61	5.06	6.23
SEM	0.198	0.095	0.178	0.074
Contrasts		H	°≻F	
No Slurry vs. Slurry	0.002	< 0.001	< 0.001	< 0.001
Stubble vs. Delayed	ns ²	0.018	ns	< 0.001
1 vs. 2 weeks	ns	ns	ns	< 0.001

Physical Characteristics and Composition of Dairy Slurry

	Item	Mean	SD
	Density, Ibs/gal	8.93	0.525
and the second se	Rate, gal/acre	4503	439.7
- Children	DM, %	5.7	1.84
THE ALL PROPERTY	N, % of DM	3.9	0.52
	NH ₄ , % of DM	1.7	0.32
and the second	P, % of DM	0.77	0.105
Succession and	K, % of DM	4.1	0.92
Sala a decision of the second	S, % of DM	0.30	0.026
	Ash, % of DM	36.1	6.56
ates were determined from and weight difference	C:N Ratio	9.7	1.02
fter slurry application to	Clostridial Cluster 1 ^{1,2}	6.89	0.181
5).	¹ Expressed log ₁₀ genomic ² Clostridium tyrobutyricun		detected.





Ethanol-Dominated	Fermentation in
Highly Sugared I	Forage Crops ¹

	Moisture	wsc	Lactic Acid	Ethanol	рН	NDF	СР	TDN
			% of D	M		%	% of DN	Λ
Boot Stage								
Initial	67.6	22.6			6.90	40.3	13.7	71.4
Final	74.0	17.8	4.82	5.82	4.61	47.0	17.9	67.8
Early Heading	Stage							
Initial	63.7	21.0			6.94	46.9	14.6	69.7
Final	67.3	11.9	1.63	4.85	5.71	55.0	16.0	60.9

Effects of Wrapping Layers on Fermentation and Alfalfa Forage Quality

Trial	Moisture	Plastic	NDF	ADF	Lactic Acid	рН
#	%	layers		%		#
1	50.2	2	42.6	32.2	1.33	4.80
		4	38.9	30.1	1.96	4.88
		6	39.8	30.4	1.68	4.93
2	61.3	2	35.9	24.3	4.52	4.49
		4	34.5	23.0	4.47	4.48
		6	33.3	24.0	4.64	4.62

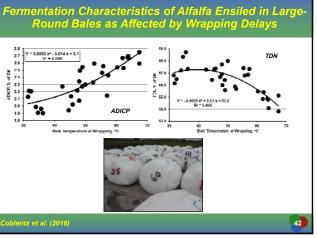
- (at least six for long-term storage and/or in southern states)
- storage site selection/maintenance is important
- patch holes with appropriate tape
- do not puncture plastic isolate from cattle, pets, and vermin

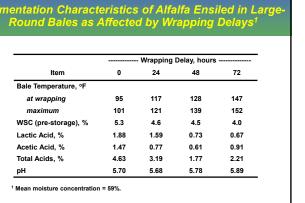
Fermentation Characteristics of Barley Ensiled in Large-Round Bales as Affected by Wrapping Delays¹

	Wrapping Delay, hours		
Item	2	10	19
рН	5.7	5.6	6.1
Lactic Acid, %	1.25	1.70	0.82
Acetic Acid, %	0.33	0.38	0.47
Butyric Acid, %	trace	trace	trace
Total Acids, %	1.63	2.15	1.35

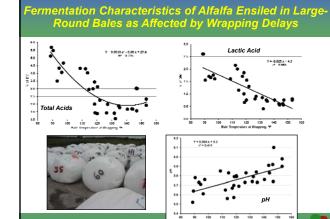
¹ Barley forage baled at 53% moisture.

37


Moshtaghi Nia and Whittenburg (2000) 39


USDA-ARS & US Dairy Forage Research Center	•
Coblentz	

11


2016 Area Dairy Conferences

ermentation Characteristics of Alfalfa Ensiled in Large Round Bales as Affected by Wrapping Delays Ruffering r=0.636 Y = 1.65 x = 263 r' = 0.759 Capacity 2.7 2.6 . 21 75 74 23 22 21 20 1.9 1.8 ADICP, S. of DK 1010 ŝ 4.0 wsc Ş 100 12 41

120

130

110

150

Summary

- Forage crops differ; learn their characteristics.
- Most principles of management for conventional chopped silage still apply to baled silage.
- Noisture management is critical; generally, baled silage techniques will accommodate drier (<50%) forages better than relatively wet (>60%) ones.

43

QUESTIONS?

Leading the world in integrated dairy forage systems research

45

U.S. Dairy Forage Research Center

www.ars.usda.gov/mwa/madison/dfrc

Summary

- Fermentation may occur at a slower rate for baled silage because forages are:
 - ensiled on a whole-plant basis
 usually drier than chopped silages
- As a result, producers should diligently address other management details:
 - maximize bale density
 apply plastic wrap promptly and properly
 - apply plastic wrap promptly and properly
 protect the wrapped product until feeding
 - stabilize vour investment by excluding ai

